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locus, regenerating a 10-kb Sal I fragment
of the CHLI gene, the same size found in
wild-type plants (Fig. 3A). Sequence anal-
ysis of the CHLI gene in four of the
revertants verified that the element had
excised, leaving behind a small insertion
(Fig. 2). In addition, new restriction frag-
ments that hybridized with radiolabeled
Tagl sequences were evident in the rever-
tants (Fig. 3B). Thus, in the revertants,
Tagl or Tagl-related elements had inserted
into new loci. We conclude that Tagl is a
mobile transposable element.

To confirm that Tagl is an endogenous
element of Arabidopsis, genomic DNA was
isolated from the untransformed parent
used to construct the transgenic Ac lines.
The parent originated from the ecotype
Landsberg and carries the morphological
mutation erecta. Southern blot analysis
with radiolabeled Tagl DNA indicated that
the Landsberg erecta parent contains Tagl
and two additional Tagl-related elements,
each present in only one copy per haploid
genome (Fig. 4). No Tagl or related se-
quences were found in two other ecotypes
of Arabidopsis, Columbia and Wassilewskija
(Fig. 4).

By selecting for chlorate-resistant mu-
tants of Arabidopsis from a population car-
rying an active Ac element, we have
trapped a new mobile Arabidopsis transpo-
son. Tagl transposition may have been
stimulated in the Landsberg plants by the
DNA breakage or genomic stress caused by
the integration of T-DNA into the Arabi-
dopsis genome, by the transposition of Ac
(13), or by the propagation of the plant
cells in tissue culture (14). Upon activa-
tion, the element transposed to the chll
locus and, when homozygous, produced
chll mutant progeny. We think it unlikely
that the Ac transposase directly mobilizes
Tagl, as no Ac transposase binding site
(AAACGQ) is found adjacent to the in-
verted repeats of Tagl as it is in Ac (15).
Whatever the mechanism of activation, the
now mobile Tagl should be useful for tag-
ging plant genes.
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Soil Quality and Financial Performance of
Biodynamic and Conventional Farms in New Zealand

John P. Reganold,* Alan S. Palmer, James C. Lockhart,
A. Neil Macgregor

Biodynamic farming practices and systems show promise in mitigating some of the det-
rimental effects of chemical-dependent, conventional agriculture on the environment. The
physical, biological, and chemical soil properties and economic profitability of adjacent,
commercial biodynamic and conventional farms (16 total) in New Zealand were compared.
The biodynamic farms in the study had better soil quality than the neighboring conventional
farms and were just as financially viable on a per hectare basis.

Concerns about environmental, econom-
ic, and social impacts of chemical or con-
ventional agriculture have led many farmers
and consumers to seek alternative practices
that will make agriculture more sustainable.
Both organic and biodynamic farmers use
no synthetic chemical fertilizers or pesti-
cides, use compost additions and manures
to improve soil quality, control pests natu-
rally, rotate crops, and diversify crops and
livestock. Unlike organic farmers, biody-
namic farmers add eight specific prepara-
tions, made from cow manure, silica, and
various plants, to enhance soil quality and
plant life (1).

We examined soil properties and finan-
cial performance on pairs or sets of biody-
namic and conventional systems over a
4-year period (1987 to 1991) on the North
Island of New Zealand (Table 1). We also
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made financial comparisons between these
farms and representative conventional
farms in each study region on the basis of
models used by the New Zealand Ministry
of Agriculture and Fisheries (MAF) (2). A
farm pair consisted of two side-by-side
farms, one biodynamic and one conven-
tional; a farm set consisted of three adjacent
farms, one biodynamic and two conven-
tional. The choice of five farm pairs and
two farm sets (totaling 16 farms) was made
on the basis of surveys, interviews, and
on-farm soil examinations of more than 60
farms to ensure that all soil-forming factors,
except management (3), were the same in
each farm pair or set.

The biodynamic farms had been man-
aged biodynamically for at least 8 years,
with the oldest for 18 years, to provide time
for the biodynamic farming practices to
influence soil properties. The farm pairs or
sets included a range of representative farm-
ing enterprises in New Zealand: market
garden (vegetables), pip fruit (apples and
pears), citrus, grain, livestock (sheep and
beef), and dairy. Farms in each pair or set
had the same crop and livestock enterprise.
Paddocks (fields) chosen for study in each



farm pair or set had soils in a single soil
profile class and were located at the junc-
ture of adjoining farms. The soil of each
paddock was sampled at numerous locations
4). In total, 130 soil samples from 22
paddocks were taken and analyzed (5).

In six of the seven farm sets (Table 2),
the biodynamically farmed soils had better
structure and broke down more readily to a
good seedbed than did the conventionally
farmed soils. The crumb and nut structures
found predominantly on the biodynamic
farms provide better aeration and drainage
for crop or grass growth compared with the
blocky and clod structures found mostly on
the conventional farms (6). Soil was more
friable, which makes it more easily tilled by

farm machinery, on four of the seven bio-
dynamic farms compared with that of their
conventional neighbors.

The surface soil bulk density was signif-
icantly less on four of the biodynamic farms
than on their conventional counterparts
(Table 2); when all data were aggregated,
bulk density was significantly lower on the
biodynamic farms (Table 3). Bulk density is
related to mechanical impedance and soil
structure, both of which affect root growth.
Penetration or cone resistance is another
indicator of mechanical impedance. Two of
the three biodynamic farms in pasture had
significantly lower penetration resistances
in the upper 20 cm than their conventional
counterparts had. The results were variable

REPORTS

for the horticultural and mixed farms (Ta-
ble 2). Overall (Table 3), the biodynamic
farms had a significantly lower penetration
resistance in the upper 20 cm; there was no
difference between farming systems in soil
20 to 40 cm below the surface.

Organic matter content, soil respiration,
mineralizable nitrogen, and the ratio of
mineralizable nitrogen to organic carbon
were significantly higher on almost all the
biodynamically farmed soils than on the
conventionally farmed soils (Table 2). The
aggregated data (Table 3) indicate signifi-
cantly higher values for these four parame-
ters on the biodynamic farms. The higher
amounts of organic matter on the biody-
namic farms have contributed to better soil

Table 1. General farm characteristics. Abbreviations: bio, biodynamic; veg, vegetables; con, conventional; pip, pip fruit; cit, citrus; and org, organic.

Number Farm Pad-
Farm Main of years size docks* Fertilizerst Pesticides and pest
enterprise (1966 to (ha) per (1983 to 1991) management (1983 to 1991)
1991) farm
Bio veg Market 13 con; 1 1 Manures, composts, Cultural.controls,} biological
garden 4 org; bonemeal, fishwastes, controls,§ copper and sulfur sprays||
8 bio biodynamic preparations
Con veg Market 25 con 45 1 12-5-14 and 12-10-10 of Propyzamide, alachlor, maneb, propineb,
garden N-P-K vinclozolin, methamidophos
Bio pip Pip fruit 10 con, 5 2 Composts, fish manures, Cultural controlsi
15 bio biodynamic preparations
Con pip 1 Pip fruit 25 con 7 1 12-10-10 of N-P-K, Terbacil, simazine, glyphosate,
potassium chloropyrifos, guthion, azocyclotin,
superphosphate polyram, captan, triadimefon,
dodine, bitertanol
Con pip 2 Pip fruit 25 con 24 1 12-10-10 of N-P-K Amitrole, simazine, terbacil, glyphosate,
guthion, azocyclotin, chloropyrifos,
polyram, captan, dodine, bitertanol,
myclobutanil, fruit-fed ANA
Bio cit Citrus 17 con; 10 3 Composts, fish fertilizer, Copper spray,|| biological controls§
8 bio biodynamic preparations
Con cit 1 Citrus 25 con 12 2 Nitraphoska (N-P-K Glyphosate, paraquat, acephate,
fertilizer), urea, copper oxychloride
superphosphate with trace
elements
Con cit 2 Citrus 25 con 9 1 Urea, superphosphate, Glyphosate, terbuthylazine
fertigation with ammonium plus terbumeton, dimethoate,
nitrate, calcium nitrate, clofentezine, thiazolidone, diazinon,
sulfate of potash copper oxychloride, maneb plus
zinc and manganese, benomyl
Bio mixed Grain, sheep, 15 con; 202 1 Rock phosphate, seaweed, Cultural controls, biological controls§
and beef 10 bio composts, biodynamic
preparations
Con mixed Grain, sheep, 25 con 280 1 Superphosphate, urea, MCPA + triazine, MCPB 2,4-D,
and beef chlormequat chloridef chlorsulfuron, pirimicarb,
terbuconazole, cultural controlsi
Bio livestock Sheep and 12 con; 180 1 Fish fertilizer, biodynamic Cultural controls,f biological controls§
beef 13 bio preparations
Con livestock  Sheep and 25 con 445 1 Fish fertilizer, rock MCPA, glyphosate, picloram,
beef phosphate, chicken dimethyl carbate
manure
Bio dairy 1 Dairy 1 con; 6 org; 25 1 Rock phosphate, seaweed, Cultural controls, biological controls§
18 bio fish fertilizer,
biodynamic preparations
Con dairy 1 Dairy 25 con 51 1 Potassium superphosphate MCPA
Bio dairy 2 Dairy 15 con; 235 2 Biodynamic preparations Cultural controls,t biological controls§
10 bio
Con dairy 2 Dairy 25 con 150 2 15-10-10-8 of N-P-K-S, urea 2,4-D

*Number of paddocks or fields where soil was sampled on a particular farm.

tIncludes organic and synthetic chemical fertilizers.

fCultural pest controls include

physical and mechanical practices such as rotating and diversifying crops, green manuring, clearing weeds from field borders, and altering the timing or way of

planting.
numbers.

SCIENCE ¢ VOL.260 ¢ 16 APRIL 1993

§Biological pest controls involve the introduction or buildup of natural predators, parasites, and pathogens that keep pest populations below injurious

|IApproved chemical spray by the New Zealand biodynamic and organic certification boards. YA plant growth regulator.
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Table 3. Mean values of aggregated soils data.
Data were analyzed with ANOVA so that the
variation due to different enterprises or soils
was absorbed or removed (13).

. All bio All con
Soil property farms farms
Bulk density (Mg m—3) 1.07 1.15*
Penetration resistance 2.84 3.18*
(0 to 20 cm) (MPa)
Penetration resistance 3.55 3.52
(20 to 40 cm) (MPa)
Carbon (%) 4.84* 4.27
Respiration (ul O, 73.7* 55.4
hour=* g=")
Mineralizable N 140.0* 105.9
(mg kg™")
Ratio of mineralizable 2.99*% 2.59
NtoC (mgg™")
Topsoil thickness (cm)t 22.8* 20.6
CEC (cmol kg="% 21.5% 19.6
Total N (mg kg=") 4840* 4260
Total P (mg kg~") 1560 1640
Extractable P 45.7 66.2*
(mg kg~7)
Extractable S 10.5 21.5%
(mg kg~")
Extractable Ca 12.8 135
(cmol kg—")§
Extractable Mg 1.71 1.68
(cmol kg=")§
Extractable K 0.97 1.00
(cmol kg=")§
pH 6.10 6.29*
*P < 0.01. fTopsoil thickness includes surface

and subsurface (A) horizons. fCation exchange
capacity in centimoles of cation charge (+) per kilo-
gram of soil. §Centimole charge of specified cat-
jon per kilogram of soil.

structure and consistence and to bulk den-
sity and cone resistance that are lower than
those of their conventional neighbors. Soil
respiration and the ratio of mineralizable
nitrogen to organic carbon give an indica-
tion of the microbial activity of the soil,
which accounts for the recycling of vital
nutrients such as nitrogen, phosphorus, and
sulfur for plant growth (7).

Earthworms were counted on the two
market gardens to give another indication
of biological activity. From 30 soil cores (15
cm in diameter by 15 cm deep) taken on
each paddock, we found the biodynamically
farmed soil to average 175 earthworms per
square meter compared with 21 earthworms
per square meter on the conventionally
farmed soil. By mass, the biodynamically
farmed soil had 86.3 g of earthworms per
square meter, whereas the conventionally
farmed soil had 3.4 g of earthworms per
square meter. These differences were most
likely due to the use of pesticides, shown to
reduce earthworm populations (8), on the
conventional farm.

Topsoil was significantly thicker on two
biodynamic farms than on their conven-
tional neighbors (Table 2). Overall, 2.2 cm
more topsoil was present on the biodynamic
farms (Table 3). These differences were

partly due to the significantly lower soil
bulk densities on the biodynamic farms.
Greater organic matter content and biolog-
ical activity contributed to the formation of
topsoil at a faster rate on the biodynamic
farms. Soil erosion was not significant on
any of the paddocks in this study.

Cation exchange capacity and total ni-
trogen were more often higher on the indi-
vidual biodynamic farms, whereas total and
available phosphorus, available sulfur, and
soil pH were more often higher on the
individual conventional farms (Table 2).
This relation, except for total phosphorus,
holds true when the aggregated nutrient
data were compared (Table 3). Aggregated
amounts of calcium, magnesium, and potas-
sium were similar in the two systems. There
were a number of statistically significant
differences in the amounts of phosphorus,
sulfur, potassium, calcium, and magnesium
between individual farms, although few dif-
ferences were of biological significance
(that is, almost all soils were of adequate
fertility for their respective crops) (9).

To evaluate financial viability, we ex-
amined farmers’ annual accounts from 1987
to 1991. These accounts are the only com-
mon source of farm financial data in New
Zealand because few New Zealand farmers
keep financial records of individual farm
enterprises beyond annual accounts (10).
Reliable economic data from annual ac-
counts were available for 11 of the 16 farms.
We compared the financial performance of
the biodynamic farms both with that of
their conventional neighbors and with that
of the average, representative conventional
farm (2) in the region of each farm pair or
set. Most of the products from the biody-
namic farms were sold as certified organic or
biodynamic at a premium price up to 25%
higher than the market price of a similar
conventional product.

Profits can be different from one farm to
another because of the ownership structure
or the amount of fixed costs such as debt
servicing. To compensate for these differ-
ences, we excluded fixed costs from our
calculations and used an analysis of enter-
prise gross margins as a measure of financial
performance (11). Gross margin is the dif-
ference between total farm income per
hectare and variable or operating expenses
per hectare. Examples of variable costs in-
clude those of fertilizers, pesticides, biody-
namic preparations, fuel, and labor. We
only examined farming enterprises requir-
ing similar commitments of owner-operator
resources per hectare, except for dairy farm
pair 2, where the biodynamic farm was
selling yogurt and the conventional farm
milk. Here, the additional direct costs of
yogurt production were included in the
gross margin analysis of the biodynamic
farm.

SCIENCE

VOL. 260 * 16 APRIL 1993

One biodynamic farm (livestock) had
greater, two biodynamic farms (mixed and
dairy 2) had lower, and two biodynamic
farms (market gardens and citrus) had sim-
ilar gross margins compared to those of their
conventional neighbors (Table 4). Com-
pared with the representative conventional
farms (2) in their regions, three biodynamic
farms (citrus, livestock, and dairy 1) and
three conventional farms (mixed, live-
stock, and dairy 2) were more prosperous,
two biodynamic (mixed and dairy 2) were
less prosperous, and one conventional farm
(citrus) was comparable. In the majority of
cases, the biodynamic farms had less year-
to-year variability in gross margin than did
the conventional farms. Economic stability
is one of the most significant characteristics
of sustainable farming systems. Total in-
come and variable costs were not consis-
tently lower or higher on the biodynamic
farms than on their adjacent conventional
neighbors or the MAF representative (2)
conventional farms.

From farmer interviews and their annual
accounts, we determined that the biody-
namic citrus, livestock, and dairy 1 farms
have been able to secure reliable markets
for their products, which is an important
factor for economic stability. Gross margins
for the biodynamic market garden were less
than for the conventional counterpart in
1988 and 1989 but greater in 1990 and
1991. Annual returns per hectare for the
biodynamic market garden have increased
consistently over this 4-year period because
of the development of biodynamic or organ-
ic markets and improved productivity and
farm management practices. The biody-
namic mixed farm (except in 1991) and the
biodynamic dairy farm 2 have not matched
the annual gross margins representative of
conventional farms in the same region.

Although gross margins provide a com-
parison of financial performance of two
farms under different management ap-
proaches, total gross margins illustrate the
financial return to each whole farm or to
the major farm enterprise. Total gross mar-
gin is simply the gross margin times the
effective enterprise area of each farm or
each MAF model. The biodynamic farms
had lower total gross margins than their
conventional neighbors and most of the
MAF conventional farms (Table 4). Much
of this difference was due to the smaller size
and greater enterprise diversity of the bio-
dynamic farms.

The biodynamic farms proved in most
enterprises to have soils of higher biological
and physical quality: significantly greater
organic matter content and microbial activ-
ity, more earthworms, better soil structure,
lower bulk density, easier penetrability, and
thicker topsoil. The results of the soil
chemical analyses were variable. On a per
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hectare basis, the biodynamic farms were
just as often financially viable as their
neighboring conventional farms and repre-
sentative conventional farms.
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Transient Transfection and Expression in the
Obligate Intracellular Parasite Toxoplasma gondii

Dominique Soldati and John C. Boothroyd*

Toxoplasma gondii is a protozoan pathogen that produces severe disease in humans
and animals. This obligate intracellular parasite provides an excellent model for the study
of how such pathogens are able to invade, survive, and replicate intracellularly. DNA
encoding chloramphenicol acetyltransferase was introduced into T. gondii and transiently
expressed with the use of three vectors based on different Toxoplasma genes. The ability
to introduce genes and have them efficiently and faithfully expressed is an essential tool
for understanding the structure-function relation of genes and their products.

Toxoplasma gondii is a ubiquitous parasite
that can infect almost any warm-blooded
vertebrate. In humans, it has long been
recognized as a major cause of severe con-
genital disease. More recently, it has
emerged as one of the most important
opportunistic pathogens in patients with
acquired  immunodeficiency  syndrome
(AIDS) (1). In the laboratory, T. gondii is
relatively easy to handle and maintain and
consequently has become an important
model for the study of how obligate intra-
cellular parasites function. To date, howev-
er, such studies have been hampered by the
absence of a method for introducing DNA
into the parasites. In part, this lack has
been due to the difficulty of transfecting one
cell inside another: the many membranes
that the transfecting DNA must cross rep-
resent a significant barrier, and the depen-
dence on the host cell for survival can
further preclude manipulations of the extra-
cellular parasite. As a result, although
transfection and stable transformation have
been achieved for a range of trypanosoma-
tids (2-8), such methodologies have not
been reported for any of the obligate intra-
cellular parasites, most notably members of
the phylum Apicomplexa, which includes
Toxoplasma, Eimeria, and Plasmodium, the
causative agent of human malaria.
Electroporation has successfully been
used to introduce DNA into many cell
types. It is believed that pores are generated
by reversible electrical breakdown of the
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cell membrane. Recent studies have shown
that immediately after electroporation,
cells are sensitive to the osmolarity and
ionic composition of the medium and that
the use of a potassium phosphate—based
electroporation buffer (cytomix) that re-
sembles the cytosol’s ionic composition
considerably increases cell survival (9). We
chose, therefore, to use such a buffer in our
initial transfection studies rather than cul-
ture medium or phosphate-buffered saline,
which contain sodium ions at concentra-
tions that are detrimental to the cells. We
found that electroporation of T. gondii in
cytomix buffer gives an extremely good rate
of cell survival: an average of ~80% of the
parasites are capable of invading host cells
after electroporation as compared with the
same population of parasites not subjected
to an electric pulse.

For use as a reporter construct, a plasmid
(SAG1/2 CAT) was made containing the
chloramphenicol acetyltransferase (CAT)
gene (I1) and the upstream and down-
stream sequences of the T. gondii major
surface antigen gene, p30 or SAGI (12)
(Fig. 1). This was done by a two-step
method. First, reverse polymerase chain
reaction (PCR) (13) was performed with an
SK+ Bluescript vector (Strategene) con-
taining the complete SAGI gene with the
use of primers that generate an Nsi I site at
the second in-frame ATG and a Pac I site at
the stop codon. Then, a CAT cassette with
a Nsi I site embracing its ATG and a Pac I
site encompassing its stop codon was gen-
erated by PCR and cloned into the corre-
sponding Nsi I-Pac I sites of the SAGI
expression vector.

Electroporation of this construct into
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